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Certain peculiarities of shock and plastic wave propagation in porous media 

are analyzed using the equations of state of the porous medium which take 

into account the plastic closing of pores and the medium viscous properties, 

as well as the equations of motion and conservation of mass. Effects of shock 
wave velocity, viscosity, yield stress, and porosity on the wave propagation 
properties are investigated. The condition of existence of shock waves is 
obtained. The range of parameter values for which complete plastic closing 
of pores at the wave front and in the region of partial closing of the porespace 
is determined. The effect of strength and viscosity properties of a porous 
medium on the behavior of Hugoniot curves is analyzed. 

The dynamics of propagation and damping of a shock wave of not very high inten- 
sity (of the order of some tens of kilobars in the case of solid porous bodies) are to a 

great extent determined by the pattern of closing of voids (at the indicated pressures 

this is the state of plastic flow in solid bodies). In a number of experimental invest- 
igations [l-3] the considerable effect of the body viscosity properties was indicated. 

Propagation of low intensity waves is considerably affected by the character of the 
load-unload diagram which determines the additional damping mechanism (besides 

viscosity and thermal conductivity) in such waves. 

1. Let US consider a plane stationary wave in a homogeneous medium with identi- 
cal spherical pores of radius a, . In this case all characteristics of motion depend 

on the single variable 5 == z - Dt, where D is the wave velocity. We shall 

analyze the plastic wave front without going into the structure of the elastic foreshock. 

If the relative volume of pores is not large, the stress deviator is virtually independent 

of the coefficient of porosity and is constant [4,5]. The relation between porosity and 

pressure at the wave front is then of the form [l] 

P - P, == poD2 (1 - p. / p) 
(J..l) 

where PO is the pressure ahead of the plastic wave front in the region which contains 
the elastic foreshock, and p0 is the density of the unperturbed medium. Density 

variations in an elastic wave can be neglected [l, 61. 
We divide the whole body into identical spherical cells, each containing 0lie 

pore so thdt the total mass of cells in a unit of mass is unity. The cell radius must 

then satisfy the condition 4nNp, (b,” - ao3) / 3 = 1, where P,,, is the density 
of the solid material and N is the number of cells in a unit of mass. Volume varia- 

tion of an individual cell defines macroscopic variations of the porosity parameter. 
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In a wide range of shock wave intensity variation the width of the shock wave front 

A is considerably greater that the cell characteristic dimension b, . The relative 

variation of the medium macroscopic parameters (pressure, density, etc.) over the 
length of an isolated element is ~b,, / A < 1. In this approximation it is possible 

to consider that the cell is subjected to two independent motions, viz., as a whole, 

at mass velocity u , and being compressed by pressure P of the medium. 
Assuming that the cell retains its spherical form under compression (1, S], we det- 

ermine the porosity parameter a as the ratio of the cell total volume to the volume 

of the rigid phase, i. e. 
a = b3 / (b3 - as) (1.2) 

where b and a are, respectively, the instantaneous outer and inner radii of the cell. 

The equation which defihes the motion of material toward the pore center is 

where r is the radius measured from the pore center, pm is the density of the solid 
material, u is the mass velocity of material toward the pore center, and CJ,. and 

(~8 = a, are components of the local stress tensor. The boundary condition at the 

pore surface is 
u, I,=, = 0 

(1.4) 
In the considered pressure range the material behaves like an incompressible one 

that satisfies the condition of viscoplastic flow [l] 

(J, - 00 = Y + 2q (&I / dr - v / r) (1.5) 

where Y is the yield stress and q is the viscosity coefficient. The condition of con- 
servation of the cell mass implies that 

r-3 - rOs = a3 _ aa3 ( 1.6) 

where r,, defines the initial position of a point with instantaneous coordinate r rel- 
ative to the pore center. When P,,, = const,, variation of the medium density is 
solely due to the variation of porosity. The relation between p and a is defined by 
the formula 

p = Pm/a 
(1.7) 

Solution of the stated dynamic problem (1.2) - (1.7) on plastic closing of a spher- 
ical cell [l. 63 yields the relation between porosity cc and pressure P1 on the ceil 
surface (i. e. the quantity or when r = b). It was used in [l] as the mean pressure 
in the medium. Such identification corresponds to the model which defines the be- 

havior of porous particles immersed in a liquid phase. However, when considering 
porous media, it is necessary to take into account that the mean pressure in the cell 

(with allowance for dynamic effects) is not equal Pi. 
The averaging of local pressure distribution P, (r, t) obtained from the solution 

of (1.3) with allowance for (1.4)-(1.7) and averaged over the cell volume yields the 
following result (a, is the initial porosity) 

P P&JO8 = 
(a0 - I)“’ {-A(o)~+W+&}-3.~~i) + (1.6) 
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A (@ = 4 
3 (a - i)‘is 

+ (a - “F- d’~ 

B(a) = + _ ’ 1 
(U- i)lia + 3 (a-_1)Y” 

The last two terms in (1.8) define the viscoplastic properties of medium and were 
taken from [l], while the first terms which define the contribution of inertial effects 
differ from those in [l]. 

Owing to the irreversibility of the loading-unloading process in the case of porous 
media [‘I] the behavior of material under increasing or decreasing density must be de- 

fined by different equations. Thus formula (1.8) is applicable only to the loading 
stage, since under conditions of unloading the deformation of medium is of the elastic 

type. 

2. Equation (1. l), with allowance for formula (1.Q and formula (1.8), in which 

it is necessary to pass to the variable 5 define the structure of the shock wave front, 

Pressure in the elastic foreshock which corresponds to the transition of material to the 
plastic state is 

&+n~ 
a0 - 1 (2.1) 

By solving these equations for the function of a and introducing the dimensionless 
variable E = 5 / a, we obtain an ordinary second order differential equation which 

defines the wave profile. Since the variable g does not explicitly appear in the ob- 

tained equation, its order can be lowered by introducing the new function g (a) = 
da I dE. As the result, we obtain the following equation: 

and the parameter R-l is the analog of the Reynolds number. 
The boundary conditions g (ao) = 0 for Eq. (2.2) are satisfied in the case of 

a wave propagating in the direction of the t -axis, when E + + 00 . 

Equation (2.2) defines nonlinear damped or periodic oscillations with the type of 
solution dependent on the set of parameters k, R, and a,. Let us investigate its 

solution in the phase plane g, a. The equation has three singular points on the line 

g = 0. The first singularity is associated with the physical process of closure or por- 
es at the wave front when a = I. The other two points define the equilibrium pas- 

ition (#a / df2 = g = 0) or the points of intersection of the Rayleigh lines with 

the curve of static compression of the material. They are obtained by solving the 

transcendental equation 
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F (a, ao, k) = 0 
(3.3) 

which is satisfied for a = a, and some a, 
< a,. 

contained within the limits 1 < a, 

If the wave propagates in the positive direction of the [ -axis, formula (2.2) 
defines a loading wave only in the half-plane g > 0. To obtain a complete picture 

it is, however, necessary to consider the whole region. 

3. Investigation of singularity properties of (2.2) when a = a, by general meth- 

ods of the qualitative theory of differential equtions shows that the type of the singular 

point is determined by the two parameters k and a, . If k < k,(a,), where 
k. = [3 (a0 - 1) / (2ao)l’l~, the singularity is a saddle, and it is possible to move 
from point g = 0, a = a, in the directions defined by the separatrices 

g = (a, - a) / A* (3.1) 

At = (a,, - l)‘U (ao) x 

- F _t [y + (1 _ +) (a0 --’ f” A (ao,]“z}-1 

The loading wave that propagates in the direction of increasing E is defined by 
the separatrix determined with the plus sign at the root. Integrating with respect to 

E relationships (3.1) with the plus sign (and with allowance for g = da / dt) , we 

obtain for the shock wave profile with E + + M, the asymptotic formula 

a0 - a = c exp (- E/A+) (3.2) 

where c is the constant of integration. The quantity A, defines the wave character- 
istic dimension, i.e. the length along which changes of porosity and density occur e 

times. As I? (or viscosity coefficient ?j) increase, A+ also increases, while the 
separatrix angle of inclination to the a -axis decreases and tends to zero as R --f cc. 

When k > k. the solutions do not generally satisfy the physical requirement that 
in the case of a focus or center g > 0 , or, if the singularity is a node, the integr- 
al curves issue from the point a, in the direction of increasing a (the behavior of 
curves near a singularity is similar to that shown in Fig. 1). Hence shock waves can 

exist in a porous medium when k < k,. The quantity k, determines the lowest 
velocity of plastic shock wave propagation in the considered porous material 

D min = {Y / (pmkoa))‘/*. = {Wa, / bp,,, (a0 - l)l)‘ia 
(3.3) 

4< Let us consider the conditions of pore closure at the wave front. When R = 
0 the input equation (2.2) is integrable 

ga = 2 (% - i)“# 

t 
(a0 - W Pa + a01 

34 (a) 2%S - k2H (a, cb)} 

H(a,ao)=ao--+f~n~+aa~n a”ct+:,’ 

(4.1) 

A solitary wave in variables a, E in the phase plane corresponds to the closed 
curve (4.1) symmetric about the a -axis. The multiplier in front of braces in(4.1) 
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is positive when a > 1 and the expression within braces is positive when k < j& 
and vanishes at point a = a, < aO. This condition with Eq. (1.1) determine the 
Hugoniot curve (the curve of maximum deviation of quantities from their equilibrium 

values) for a porous medium when R = 0. Its comparison with the curve of static 

compression (curve 3 in Fig. 2) shows the minimal porosity a, is lower iAl the 

Fig. 1. Fig. 2 
dynamic case, hence the pore radius is smaller than its equilibrium size determined 

under conditions of static compression. 

The increase of parameter R in (2.2) (equivalent to the increase of viscosity co- 
efficient 11) with fixed k and a,, results in increased damping the shock wave. Hence 
all solution in the half-plane g > 0 with R > 0 issuing from the initial point g 
= 0,a = a, lie below the trajectory with R = 0 , and intersect the a -axis for 
larger values of a. This implies that when for fixed k and a, the trajectory with 
zero viscosity (R = 0) does not reach the value a = 1, then no collapse of pores 

in the compression wave can take place (a, > 1) at any R . 
Let us consider the solution with R = 0 near a - 1. We introduce the vari- 

able 6 = a - 1, expand the expression within the braces in (4. l), retain in function 

A (a) the term _ 1 / &IS which tends to infinity, and reduce formula (4.1) to 

the form 

4cQk26 
(c?+ - l)Z (a0 + 2) In 

1 
6 (4.2) 

kc2 = (a, - 1)2 (a, + 2)/ t2aoa (a, - 1 + In ao)l 

Let us analyse the dependence of solution properties on parameter k . The integ- 

ral curve in which k is equal k, separates two classes of solutions. When k > kc 

the trajectories do not reach the singular point, forming in the neighborhood of 6 = 0 

a saddle (Fig. 3). When k < k, the behavior of solutions is determined by the rela- 

tion g - 8’*, and the integral curves reach the singular point, becoming tangent to 

the g -axis at zero. The bunch of curves that have a physical meaning is bounded 
from above by the trajectory with k = 0. 

The separated trajectory with k = k, reaches the singular point but at a different 

angle of inclination, since in this case g - 82/a Vln (1 / 6) . This solution is also 
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exceptional in the sense that at the reversal point the acceleration daa / at2 = g (dg / 
da) vanishes, while along all of the remaining curves it either tends to infinity when 

k < k, (a, = 1) , or (a, > 1) depending on number k it is equal to some quan- 
tity that tends to zero when k -+ k, (k > kc). 

The dimensionless number kc determines the critical velocity of the shock waveD,. 
The collapse of pores can occur when the shock wave velocity exceeds the critical,i. e; 

D>Dc== (4.3) 

5. The behavior of solutions in the neighborhood of the singular point g = 0, a = 

1 with R > 0 and fixed a0 and k < k, can be investigated by transforming (2.2) 

with allowance for a -f i , and introducing new variables 
U-l 

cc= (ao- 1)R” ’ 
h(x) = R (a) 

(a,--1)kRz 

which do not alter the singularity properties. As the result, we obtain the following eq- 
uation: 

dh k + .$ + 22 ln $ M c- exp I(;$ / k2) = exp (-ari/ O&) (5.2) 
iiii = 6x f: 

The singular points g = 0, a=1 and g = 0, a = aI in (2.2) have become h = 
0, x = 0 and h = 0;~ = M, respectively. Examination of a reasonably small 

J 

Fig. 3 

neighborhood of the coordinate origin, which does not include 

the singularity at x = M , shows that the behavior of integral 

curves near the point h = x = 0 is similar to that shown in 

Fig. 3. The singular solution h = 24~“~ which corresponds 
to the critical value of parameter R = RI (k, a,,) separates 
two different sets of solutions. When R < R, all solutions 
pass through the coordinate origin and are tangent at zero to 
the h -axis in conformity with the law h - zl/‘. The bunch 

of integral curves that define solutions which have a physical 
meaning is bounded from above by the trajectory with R = 0 

(see formula (4.1)). For solutions of this type, including the 

singular solution, we have @a / df2 - DO as a - 1. Inte- 
gral curves of the second set (R > R,) do not pass through 

the singular point and intersect the x -axis at x > 0 (a, > 1). Accelerations at 
reversal points are finite and tend to vanish as R -* RI. 

The curve RI (k, ao) which separates the region of values of parameters R and 
k for which pores in the shock wave become completely closed from the region of 

incomplete closing of the pore space is obtained by numerical integration of equations. 
Functions R, (k, ao) are shown in Fig.4 for several values of initial porosity; curves I’, 

Z’, and 3’ correspond to a, = 1.5, 1.2, and 1.05 , respectively. The initial poi- 
nts of curves on the k -axis correspond to k, (ao) determined by formula (4.2). 

6. Let us consider the singular point a1 whose position on the a -axis is determ- 
ined by Eq. (2.3). Analysis of that equation shows that a, is comprised within the 



556 s. 2. Dmin and v. v. surkov 

limits l<al<ao, with al-+a, as k+k,and al-+1 as k-tO(~-w). 

Investigation of the properties of solutions of Eq. (2.2) near that point shows that 

the singularity is either of the focus or node type, depending on parameter values (it 
cannot be a center owing to the damping effect of viscosity). In the case of a node 
the separatrices are determined by the equations 

where o1 is obtained from (2.3). The expression under the radical vanishes for some 

R = R, (k, %I) which corresponds to transition from one case to another. A qualitat- 
ive pattern of phase trajectories near the singular point (a node) is shown in Fig. 1 for 

R),R,, where lines 1 and 2 are the separatrices that correspond to the plus and min- 
us signs before the radical in (6.1). 

As R increases, the angle of inclination of the first separatrix to the 
a -axis decreases and tends to zero as R + cm, while the angle of inclination of the 

second separatrix increases, tending to n I 2. when R = R, the two separatrices 
merge. Among the multiplicity of curves reaching the nodal point in the case of fix- 
ed parameters, only one issuing from the point g = 0, a = a,, in the direction deter- 

mined by formula (3.2) defines the wave front. Two situations are then possible (Fig. 

1): either tbis curve passes through region CC < a1 and intersects the a -axis when 
a, < al , as in the case of a focus for R < R 2 , or it reaches the singular point from 
the region g > 0, a > a1 (a, = al). 

Qualitatively the difference between solutions 

is revealed by that in the first case inertial effects 

predominate, while in the second it is the viscos- 

ity. In solutions of the first type the acceleration 
at the reversal point is nonzero. A complex os- 
cillatory process whose definition requires the 
taking into account of the material elastic prop- 

erties is generated in a porous medium behind 
the wave front. The Hugoniot curve deviates 
from the static compression curve of a porous 
material (Fig. 2) and the minimal porosity an 

in the dynamic case is lower than the equilibrium 

quantity a,. 
The compression wave profile in the case of 

the second type solutions is monotonic, with the 

0 0*5 1.0 R derivatives of all quantities tending to zero as 

E -- co. The Hugoniot curve coincides with 
Fig. 4 the static compression curve, which shows that 

viscosity effects dominate those of inertia. 

The curve of critical values of parameters R = R3 (k, a,) which Separates the 
regions that define the two solution types associated wit.h different motions of the par- 

0~s medium is determined by numerical integration of equations. CXUVeS of function 

Rs (k, oo) are shown in Fig.4 for three initial porosities of the same ValtU as for 

curves 1’ - 3’. The dash lines separate regions of parameters (k > ko) in which 
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plastic shock waves are not possible in a porous medium. 

Hugoniot curves shown diagrammatically in Fig. 2 are for a porous medium and 
several values of parameter R. They represent a bunch of curves comprised bet- 
ween curve 1 corresponding to R = 0, and the static compression curve 3 . The 
typical Hugoniot curve (curve 2) is tangent to curves 1 and 3 when R is nonzero 
and cc = a,. Part of this curve that corresponds to shock wave velocities which sat- 
isfy the condition R > R,, coincides with the static compression curve. For con- 
siderable D , when the relationship R, (k, a,) <R < R3 (k, a,,) is satisfied, the 

Hugoniot curve deviates from curve 3 , while for R < RI (k, a,) it merges with the 
axis a=l. 

The distribution of microstresses near a pore may differ from the spherically sym- 

metric owing to the effect of adjacent pores and to additional microscopic stresses 
generated by inhomogeneity (porosity) of the material. Generally, the allowance for 
the effect of several spherical pores complicates the problem, hence we shall restrict 

the evaluation of that effect to the case in which the distribution of microstresses near 

the pore appreciably differs from the spherically symmetric only at distances of the 
order of d / 2 < r f b (d is the average distance between pores), and without taking 

into consideration dynamic effects (a’ = CL” = 0). In this case the evaluation form- 
ula for the error AP / P due to the nonspherical part of stresses AP implies that, for 

instance for a = 1.2 the relative error is of order 0.17. [9]. 

7. The above analysis makes possible a number of conclusions about the pattern 

of plastic shock wave propagation in porous media. 

The lowest propagation velocity of plastic shock waves is determined by formula 

(3.3). The collapse of pores at the wave front does not occur if that velocity is below 
its critical value determined by formula (4.3). Generation of the minimal or critical 
velocities of shock waves depends on the strength properties of the solid medium (in a 

liquid with Y = 0 these velocities are zero). 
If the medium parameters and the shock wave velocity satisfy the condition R < 

R, (k aoh inertial effects predominate and the complete closure of pores takes 

place. When a -+ 1 the mode of pore closure in the plastic shock wave front is 
analogous to the law of bubble collapse in liquid, established in [lo, 111, This can 

be ascertained by passing from variables g and a to a and p = da / dE, where 
a is the radius of a pore. The law g = c1 (a - ‘l)“a then assumes the form q = 
c2u-+ (cl and c2 are constants) obtained in [lo, 11) . 

When condition R, (lc, a,) < R < R, (k, a,) is satisfied, the closure of por- 
es is incomplete and the minimal radius of pores in the wave front is smaller than its 

equilibrium size. Presence of viscosity and strength of the solid material is revealed 

by the existence of a strong oscillatory process behind the compression wave front. 

when R > R, (k, a,) the wave front structure is essentially determined by the 
viscoplastic properties of the medium. The Hugoniot curve merges with that of static 
compression of the porous medium. 

The curves illustrating the critical values of parameters were obtained by analyz- 
ing the properties of singular points followed by numerical integration of equations. 
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